

$\mathbf{2}$	(i)		$\mathbf{P}+\mathbf{Q}+\mathbf{R}=0 \mathbf{i}+0 \mathbf{j}$	B1 [1]	Accept answer zero (ie condone it not being in vector form)
	(ii)	(A)		The particle is in equilibrium	If "equilibrium" is seen give B1 and ignore whatever else is written. Allow, instead, "acceleration is zero", "the particle has constant velocity" and other equivalent statements. Do not allow "The forces are balanced", "The particle is stationary" as complete answers

		mark	notes
(3i)	$\begin{aligned} & 270-\arctan \left(\frac{6}{4}\right) \\ = & 213.69 \ldots \text { so } 214^{\circ} \end{aligned}$	M1 A1 2	Award for $\arctan p$ seen where $p= \pm \frac{6}{4}$ or $\frac{4}{6}$, or equivalent cao
(ii)	Need $(-4+3 k) \mathbf{i}+(-6-2 k) \mathbf{j}=\lambda(7 \mathbf{i}-9 \mathbf{j}) *$ either so $\frac{-4+3 k}{-6-2 k}=\frac{7}{-9}$. or equivalent $k=6$ or $\begin{aligned} & -4+3 k=7 \lambda \\ & -6-2 k=-9 \lambda \\ & k=6 \end{aligned}$ trial and error method	M1 M1 A1 A1 M1 A1 A1 4	Attempt to get LHS in the direction of $(7 \mathbf{i}-9 \mathbf{j})$. Could be done by finding (tangents of) angles. Accept the use of $\lambda=1$. Attempt to solve their *. Allow $=\frac{7}{9}, \frac{9}{7},-\frac{9}{7}$ Expression correct Award full marks for $k=6$ found WWW Attempt to solve their *. Must have both equations. Correc equations Award full marks for $k=6$ found WWW M1 any attempt to find the value of k and 'test' M1 Systematic attempt in (the equivalent of) their * Award full marks for $k=6$ found WWW
		6	

	mark	comment	sub
4(i) $\begin{aligned} & \sqrt{10^{2}+24^{2}}=26 \text { so } 26 \mathrm{~N} \\ & \arctan (10 / 24) \\ & =22.619 \ldots \text { so } 22.6^{\circ}(3 \mathrm{s.f} \text {. }) \end{aligned}$	B1 M1	Using arctan or equiv. Accept $\arctan (24 / 10)$ or equiv. Accept 157.4°.	3
(ii) $\mathbf{W}=-w \mathbf{j}$	B1	Accept $\binom{0}{-w}$ and $\binom{0}{-w \mathrm{j}}$	1
(iii) $\mathbf{T}_{1}+\mathbf{T}_{2}+\mathbf{W}=\mathbf{0}$ $\begin{aligned} & k=-10 \\ & w=34 \end{aligned}$	M1 B1 B1	Accept in any form and recovery from $\mathbf{W}=w \mathbf{j}$. Award if not explicit and part (ii) and both k and w correct. Accept from wrong working. Accept from wrong working but not -34 . [Accept - $10 \mathbf{i}$ or $34 \mathbf{j}$ but not both]	
	7		

		mark	comment	sub
5(i)		B1	Sketch. O, i, j and r (only require correct quadrant.) Vectors must have arrows. Need not label r.	
(ii)	$\begin{aligned} & \sqrt{4^{2}+(-5)^{2}} \\ & =\sqrt{41} \text { or } 6.4031 \ldots \text { so } 6.40 \text { (3 s. f.) } \\ & \text { Need } 180-\arctan \left(\frac{4}{5}\right) \\ & 141.340 \text { so } 141^{\circ} \end{aligned}$	M1 A1 M1 A1	Accept $\sqrt{4^{2}-5^{2}}$ Or equivalent. Award for $\arctan \left(\pm \frac{4}{5}\right)$ or $\arctan \left(\pm \frac{5}{4}\right)$ or equivalent seen without 180 or 90 . cao	4
(iii)	$12 \mathbf{i}-15 \mathbf{j} \text { or }\binom{12}{-15}$	B1	Do not award for magnitude given as the answer. Penalise spurious notation by 1 mark at most once in paper	
		6		

6 (i) $\sqrt{(-6)^{2}+13^{2}}=14.31782 \ldots$
so 14.3 N (3 s. f.)
M1 Accept $\sqrt{-6^{2}+13^{2}}$
A1

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.
Require $270+\arctan \frac{8}{3}$
so $339.4439 \ldots{ }^{\circ}$ so 339°
(iii) $\binom{-3}{5}=5 \mathbf{a}$
so $(-0.6 \mathbf{i}+\mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$
change in velocity is $(-6 \mathbf{i}+10 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$

M1 Use of N2L with accn used in vector form
A1 Any form. Units not required. isw.
F1 10a seen. Units not required. Must be a vector. [SC1 for $a=\sqrt{3^{2}+5^{2}} / 5=1.17$]

